|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Четырёхугольная пирамида SABCD вписана в сферу, центр которой лежит в плоскости основания ABCD . Диагонали AC и BD основания пересекаются в точке H , причём SH – высота пирамиды. Найдите рёбра CS и CD , если CH = 4 , AS = 3 На плоскости нарисован острый угол с вершиной в точке O и точка P внутри него. Постройте точки A и B на сторонах угла так, чтобы треугольник PAB имел наименьший возможный периметр. |
Страница: 1 2 3 4 5 >> [Всего задач: 23]
Длины сторон треугольника ABC не превышают 1.
Продолжения сторон AB и CD выпуклого четырёхугольника ABCD пересекаются в точке K. Известно, что AD = BC. Пусть M и N – середины сторон AB и CD. Докажите, что треугольник MNK тупоугольный.
Страница: 1 2 3 4 5 >> [Всего задач: 23] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|