ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 12 задач
Версия для печати
Убрать все задачи

Внутри окружности расположен выпуклый пятиугольник (вершины могут лежать как внутри, так и на окружности). Доказать, что хотя бы одна из его сторон не больше стороны правильного пятиугольника, вписанного в эту окружность.

Вниз   Решение


Для каждой вершины треугольника ABC нашли угол между высотой и биссектрисой, проведёнными из этой вершины. Оказалось, что эти углы в вершинах A и B равны друг другу и меньше, чем угол в вершине C. Чему равен угол C треугольника?

ВверхВниз   Решение


Найдите высоту и радиус основания цилиндра наибольшего объёма, вписанного в сферу радиуса R .

ВверхВниз   Решение


Постройте треугольник ABC по a, b и разности углов A и B.

ВверхВниз   Решение


Имеется n случайных векторов вида  (y1, y2, y3),  где ровно одна случайная координата равна 1, остальные равны 0. Их складывают. Получается случайный вектор a с координатами  (Y1, Y2, Y3).
  а) Найдите математическое ожидание случайной величины a².
  б) Докажите, что  

ВверхВниз   Решение


В прямоугольной трапеции основания равны 17 и 25, а большая боковая сторона равна 10. Через середину M этой стороны проведён к ней перпендикуляр, пересекающий продолжение второй боковой стороны в точке P. Найдите MP.

ВверхВниз   Решение


Любую ли сумму из целого числа рублей больше семи, можно уплатить без сдачи денежными купюрами по 3 и 5 рублей?

ВверхВниз   Решение


В параллелограмме отношение сторон и отношение диагоналей одинаковы и равны . Из вершины тупого угла A опущна высота AE на большую сторону CD . Найдите отношение .

ВверхВниз   Решение


В равнобедренный треугольник ABC  (AB = BC)  вписана окружность. Прямая, параллельная стороне BC и касающаяся окружности, пересекает сторону AB в такой точке N такой, что  AN = ⅜ AB.  Найдите радиус окружности, если площадь треугольника ABC равна 12.

ВверхВниз   Решение


Потроить треугольник по стороне a, стороне b и высоте к стороне a ha.

ВверхВниз   Решение


Приведите пример такого квадратного трехчлена $P(x)$, что при любом $x$ справедливо равенство $P(x)+P(x+1)+\dots + P(x+10)=x^2$.

ВверхВниз   Решение


n разбойников делят добычу. У каждого из них свое мнение о ценности той или иной доли добычи, и каждый из них хочет получить не меньше, чем 1/n долю добычи (со своей точки зрения). Придумайте, как разделить добычу между разбойниками.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 416]      



Задача 66824

Тема:   [ Индукция (прочее) ]
Сложность: 3+
Классы: 8,9,10,11

Любое число $x$, написанное на доске, разрешается заменить либо на  3$x$ + 1,  либо на  [x/2].
Докажите, что если вначале написано число 1, то такими операциями можно получить любое натуральное число.

Прислать комментарий     Решение

Задача 35022

Темы:   [ Индукция (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 7,8,9,10

n разбойников делят добычу. У каждого из них свое мнение о ценности той или иной доли добычи, и каждый из них хочет получить не меньше, чем 1/n долю добычи (со своей точки зрения). Придумайте, как разделить добычу между разбойниками.
Прислать комментарий     Решение


Задача 78680

Темы:   [ Индукция в геометрии ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Центральный угол. Длина дуги и длина окружности ]
Сложность: 3+
Классы: 8,9,10

На окружности радиуса 1 отмечена точка O и из неё циркулем делается засечка вправо радиусом l. Из полученной точки O1 в ту же сторону тем же радиусом делается вторая засечка, и так делается 1968 раз. После этого окружность разрезается во всех 1968 засечках, и получается 1968 дуг. Сколько различных длин дуг может при этом получиться?
Прислать комментарий     Решение


Задача 78714

Темы:   [ Индукция (прочее) ]
[ Последовательности (прочее) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3+
Классы: 8,9,10

Из натуральных чисел составляются последовательности, в которых каждое последующее число больше квадрата предыдущего, а последнее число в последовательности равно 1969 (последовательности могут иметь разную длину). Доказать, что различных последовательностей такого вида меньше чем 1969.

Прислать комментарий     Решение

Задача 34952

Темы:   [ Индукция (прочее) ]
[ Числа Фибоначчи ]
[ Системы счисления (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что любое натуральное число можно представить в виде суммы нескольких различных членов последовательности Фибоначчи. (Последовательность Фибоначчи {an} определяется условиями a1=1, a2=2, an+2=an+1+an.)
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 416]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .