ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Проведём в выпуклом многоугольнике некоторые диагонали так, что никакие две из них не пересекаются (из одной вершины могут выходить несколько диагоналей). Доказать, что найдутся по крайней мере две вершины многоугольника, из которых не проведено ни одной диагонали.

Вниз   Решение


Внутри угла AOB, равного 120°, проведены лучи OC и OD так, что каждый из них является биссектрисой какого-то из углов, получившихся на чертеже. Найдите величину угла AOC, указав все возможные варианты.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 116791

Тема:   [ Прямые, лучи, отрезки и углы (прочее) ]
Сложность: 3
Классы: 5,6,7

Внутри угла AOB, равного 120°, проведены лучи OC и OD так, что каждый из них является биссектрисой какого-то из углов, получившихся на чертеже. Найдите величину угла AOC, указав все возможные варианты.

Прислать комментарий     Решение

Задача 116556

Темы:   [ Вписанные и описанные окружности ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3-
Классы: 9,10

На стороне AC остроугольного треугольника ABC выбраны точки M и K так, что ∠ABM = ∠CBK.
Докажите, что центры описанных окружностей треугольников ABM, ABK, CBM и CBK лежат на одной окружности.

Прислать комментарий     Решение

Задача 37549

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Прямые, лучи, отрезки и углы (прочее) ]
[ Треугольники (прочее) ]
Сложность: 3
Классы: 6,7,8

Докажите, что никакая прямая не может пересечь все три стороны треугольника (в точках, отличных от вершин).

Прислать комментарий     Решение

Задача 116043

Темы:   [ Индукция (прочее) ]
[ Прямые, лучи, отрезки и углы (прочее) ]
Сложность: 3
Классы: 8

Петя умеет на любом отрезке отмечать точки, которые делят этот отрезок пополам или в отношении  n : (n + 1),  где n – любое натуральное число. Петя утверждает, что этого достаточно, чтобы на любом отрезке отметить точку, которая делит его в любом заданном рациональном отношении. Прав ли он?

Прислать комментарий     Решение

Задача 35651

Темы:   [ Покрытия ]
[ Прямые, лучи, отрезки и углы (прочее) ]
Сложность: 3+
Классы: 8,9,10

Дано бесконечное число углов. Докажите, что этими углами можно покрыть плоскость.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .