|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Вершины выпуклого многоугольника раскрашены в три цвета так, что каждый цвет присутствует и никакие две соседние вершины не окрашены в один цвет. Докажите, что многоугольник можно разбить диагоналями на треугольники так, чтобы у каждого треугольника вершины были трёх разных цветов. Даны угол и внутри его точки A и B. Постройте параллелограмм, для которого точки A и B — противоположные вершины, а две другие вершины лежат на сторонах угла. Для натурального n обозначим Sn = 1! + 2! + ... + n!. Докажите, что при некотором n у числа Sn есть простой делитель, больший 102012. |
Страница: 1 [Всего задач: 3]
Для натурального n обозначим Sn = 1! + 2! + ... + n!. Докажите, что при некотором n у числа Sn есть простой делитель, больший 102012.
Страница: 1 [Всего задач: 3] |
|||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|