ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

В трапеции ABCD стороны BC и AD параллельны, M — точка пересечения биссектрис углов A и B, N — точка пересечения биссектрис углов C и D. Докажите, что 2MN = | AB + CD - BC - AD|.

Вниз   Решение


На рёбрах AB , BC и AD тетраэдра ABCD взяты точки K , N и M соответственно, причём AK:KB = BN:NC = 2:1 , AM:MD = 3:1 . Постройте сечение тетраэдра плоскостью, проходящей через точки K , M и N . В каком отношении эта плоскость делит ребро CD ?

ВверхВниз   Решение


В драматическом театре им. Пушкина к юбилею Александра Сергеевича решили поставить оперу «Евгений Онегин». Артисты театра обладают красивыми, но не очень сильными голосами. По этой причине руководство театра дало указание приобрести радиомикрофоны. В начале и в конце спектакля все артисты находятся за кулисами. Артисты выходят на сцену и покидают ее через правую или левую кулису. Для того, чтобы петь на сцене, артист берет с собой один микрофон. Артист может выходить на сцену с микрофоном (одним), даже если ему не надо петь в этом выходе. Взяв микрофон, артист не может оставить его на сцене или передать другому артисту. При уходе артиста за кулисы микрофон остается за соответствующей кулисой до тех пор, пока его снова не возьмет какой-либо артист, выходящий на сцену.

Очередность выходов артистов на сцену и их уходов за кулисы указывается в режиссерском плане. Кроме того, в этом плане указывается, через какие кулисы выходит (или уходит) артист и поет ли он в данном выходе. 

Напишите программу, которая по заданному режиссерскому плану определяет минимальное количество требуемых для постановки оперы микрофонов, их начальное размещение по кулисам и для каждого выхода указывает, брать или не брать микрофон.

Входные данные

Первая строка входного файла содержит целое число N – количество артистов, участвующих в спектакле (1 ≤ N ≤ 1000). Во второй строке записано целое число K – количество выходов артистов на сцену (1 ≤ K ≤ 3000). Далее идут 2K строк, описывающих режиссерский план спектакля. Каждая из них содержит четверку AiBiCiDi (1 ≤ i ≤ 2K):
Ai – символ +, если в данный момент артист выходит на сцену, или символ -, если артист со сцены уходит;
Bi – номер артиста (целое число от 1 до N);
Ci – символ Л, если артист выходит (уходит) через левые кулисы, или символ П, если он выходит (уходит) через правые кулисы;
Di – символ Д, если артист поет в данном выходе (пел перед данным уходом), или символ Н, если он не поет (не пел).

Выходные данные

Первая строка выходного файла должна содержать два целых числа. Первое число – количество микрофонов перед началом оперы с левой стороны, второе число – количество микрофонов с правой стороны. В каждой из последующих K строк необходимо вывести 1 или 0 в зависимости от того, берет ли с собой микрофон очередной выходящий на сцену артист (1 - берет, 0 - не берет).

Пример входного файла

3
4
+ 1 Л Д
- 1 Л Д
+ 2 Л Н
+ 3 Л Н
- 3 П Н
+ 1 П Д
- 1 Л Д
- 2 П Н

Пример выходного файла

1 0
1
0
1
1

ВверхВниз   Решение


В тетраэдре ABCD из вершины A опустили перпендикуляры AB' , AC' , AD' на плоскости, делящие двугранные углы при ребрах CD , BD , BC пополам. Докажите, что плоскость (B'C'D') параллельна плоскости (BCD) .

ВверхВниз   Решение


По окружности отметили 40 красных, 30 синих и 20 зеленых точек. На каждой дуге между соседними красной и синей точками поставили цифру 1, на каждой дуге между соседними красной и зеленой – цифру 2, а на каждой дуге между соседними синей и зеленой – цифру 3. (На дугах между одноцветными точками поставили 0.) Найдите максимальную возможную сумму поставленных чисел.

ВверхВниз   Решение


После обеда на прозрачной квадратной скатерти остались тёмные пятна общей площади S. Оказалось, что если сложить скатерть пополам вдоль любой из двух линий, соединяющих середины противоположных её сторон, или же вдоль одной из двух её диагоналей, то общая видимая площадь пятен будет равна S1. Если же сложить скатерть пополам вдоль другой её диагонали, то общая видимая площадь пятен останется равна S. Какое наименьшее значение может принимать величина  S1 : S?

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 116705

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Формула включения-исключения ]
[ Композиции симметрий ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 4
Классы: 11

После обеда на прозрачной квадратной скатерти остались тёмные пятна общей площади S. Оказалось, что если сложить скатерть пополам вдоль любой из двух линий, соединяющих середины противоположных её сторон, или же вдоль одной из двух её диагоналей, то общая видимая площадь пятен будет равна S1. Если же сложить скатерть пополам вдоль другой её диагонали, то общая видимая площадь пятен останется равна S. Какое наименьшее значение может принимать величина  S1 : S?

Прислать комментарий     Решение

Задача 115450

Темы:   [ Арифметика. Устный счет и т.п. ]
[ Классическая комбинаторика (прочее) ]
[ Формула включения-исключения ]
Сложность: 3
Классы: 7,8,9,10

Из ряда натуральных чисел вычеркнули все числа, которые являются квадратами или кубами целых чисел.
Какое из оставшихся чисел стоит на сотом месте?

Прислать комментарий     Решение

Задача 65592

Темы:   [ Делимость чисел. Общие свойства ]
[ Обыкновенные дроби ]
[ Формула включения-исключения ]
Сложность: 3+
Классы: 7,8,9

Сколько существует несократимых дробей с числителем 2015, меньших чем 1/2015 и больших чем 1/2016?

Прислать комментарий     Решение

Задача 66840

Темы:   [ Функция Эйлера ]
[ Принцип Дирихле (прочее) ]
[ Формула включения-исключения ]
Сложность: 4+
Классы: 8,9,10,11

Некоторые из чисел 1, 2, 3, ..., $n$ покрашены в красный цвет так, что выполняется условие: если для красных чисел $a, b, c$ (не обязательно различных)  $a(b - c)$  делится на $n$, то  $b = c$.
Докажите, что красных чисел не больше чем φ($n$).

Прислать комментарий     Решение

Задача 57818

Темы:   [ Перенос помогает решить задачу ]
[ Неравенства с площадями ]
[ Формула включения-исключения ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 7
Классы: 9,10,11

В квадрате со стороной 1 расположена фигура, расстояние между любыми двумя точками которой не равно 0, 001. Докажите, что площадь этой фигуры не превосходит: а) 0, 34; б) 0, 287.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .