|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На оси Ox произвольно расположены различные точки X1, ..., Xn, n ≥ 3. Построены все параболы, задаваемые приведёнными квадратными трёхчленами и пересекающие ось Ox в данных точках (и не пересекающие ееё в других точках). Пусть y = f1(x), ..., y = fm(x) – соответствующие параболы. Докажите, что парабола y = f1(x) + ... + fm(x) пересекает ось Ox в двух точках. Натуральные числа A и B делятся на все натуральные числа от 1 до 65. На какое наименьшее натуральное число может не делиться число A + B? Функция f(x) определена для всех x,
кроме 1, и удовлетворяет равенству: |
Страница: 1 2 >> [Всего задач: 8]
Числовая функция f такова, что для любых x и y выполняется равенство f(x + y) = f(x) + f(y) + 80xy. Найдите f(1), если f(0,25) = 2.
Функция f(x) определена для всех x,
кроме 1, и удовлетворяет равенству:
Функция f(x) определена на положительной полуоси и принимает только положительные значения. Известно, что f(1) + f(2) = 10 и
Существует ли такая функция f(x), определённая для всех действительных чисел, что f(sin x) + f(cos x) = sin x?
Для всех действительных x и y выполняется равенство f(x² + y) = f(x) + f(y²). Найдите f(–1).
Страница: 1 2 >> [Всего задач: 8] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|