ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Каждая деталь конструктора "Юный паяльщик" – это скобка в виде буквы П, состоящая из трёх единичных отрезков. Можно ли из деталей этого конструктора спаять полный проволочный каркас куба 2×2×2, разбитого на кубики 1×1×1? (Каркас состоит из 27 точек, соединённых единичными отрезками; любые две соседние точки должны быть соединены ровно одним проволочным отрезком.)

Вниз   Решение


Автор: Фольклор

На фестивале камерной музыки собралось шесть музыкантов. На каждом концерте часть музыкантов выступает, а остальные слушают их из зала. За какое наименьшее число концертов каждый из шести музыкантов сможет послушать (из зала) всех остальных?

ВверхВниз   Решение


Докажите, что каждое число a в треугольнике Паскаля равно
  а) сумме чисел предыдущей правой диагонали, начиная с самого левого вплоть до стоящего справа над числом a.
  б) сумме чисел предыдущей левой диагонали, начиная с самого правого вплоть до стоящего слева над числом a.

ВверхВниз   Решение


Действительные числа x и y таковы, что для любых различных простых нечётных p и q число  xp + yq   рационально.
Докажите, что x и y – рациональные числа.

ВверхВниз   Решение


Петя умеет на любом отрезке отмечать точки, которые делят этот отрезок пополам или в отношении  n : (n + 1),  где n – любое натуральное число. Петя утверждает, что этого достаточно, чтобы на любом отрезке отметить точку, которая делит его в любом заданном рациональном отношении. Прав ли он?

ВверхВниз   Решение


На левую чашу весов положили две круглых монеты, а на правую — ещё одну, так что весы оказались в равновесии. А какая из чаш перевесит, если каждую из монет заменить шаром того же радиуса? (Все шары и монеты изготовлены целиком из одного и того же материала, все монеты имеют одинаковую толщину.)

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 115390

Темы:   [ Свойства гомотетии и центра гомотетии ]
[ Неравенства с объемами ]
[ Площадь сферы и ее частей ]
[ Объем шара, сегмента и проч. ]
Сложность: 4
Классы: 10,11

На левую чашу весов положили две круглых монеты, а на правую — ещё одну, так что весы оказались в равновесии. А какая из чаш перевесит, если каждую из монет заменить шаром того же радиуса? (Все шары и монеты изготовлены целиком из одного и того же материала, все монеты имеют одинаковую толщину.)
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .