ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Некоторые из чисел 1, 2, 3, ..., $n$ покрашены в красный цвет так, что выполняется условие: если для красных чисел $a, b, c$ (не обязательно различных)  $a(b - c)$  делится на $n$, то  $b = c$.
Докажите, что красных чисел не больше чем φ($n$).

Вниз   Решение


После обеда на прозрачной квадратной скатерти остались тёмные пятна общей площади S. Оказалось, что если сложить скатерть пополам вдоль любой из двух линий, соединяющих середины противоположных её сторон, или же вдоль одной из двух её диагоналей, то общая видимая площадь пятен будет равна S1. Если же сложить скатерть пополам вдоль другой её диагонали, то общая видимая площадь пятен останется равна S. Какое наименьшее значение может принимать величина  S1 : S?

ВверхВниз   Решение


Точки M , N и K принадлежат соответственно рёбрам CD , AD и BB1 параллелепипеда ABCDA1B1C1D1 , причём CM:MD = 1:2 , AN = ND , BK:KB1 = 2:1 . Постройте сечение параллелепипеда плоскостью, проходящей через точки M , N , K . В каком отношении эта плоскость делит ребро AA1 и диагональ BD1 параллелепипеда?

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 57]      



Задача 109342

Темы:   [ Параллельное проектирование ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11

Плоскость, проходящая через середины рёбер AB и CD треугольной пирамиды ABCD делит ребро AD в отношении 3:1, считая от вершины A . В каком отношении эта плоскость делит ребро BC ?
Прислать комментарий     Решение


Задача 87232

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Построения на проекционном чертеже ]
[ Признаки перпендикулярности ]
Сложность: 3+
Классы: 10,11


Докажите, что через данную точку можно провести единственную плоскость, перпендикулярную данной прямой.

Прислать комментарий     Решение


Задача 86955

Темы:   [ Параллелепипеды (прочее) ]
[ Построения на проекционном чертеже ]
[ Параллельность прямых и плоскостей ]
Сложность: 4
Классы: 10,11

На ребре $AD$ и диагонали $A_1C$ параллелепипеда $ABCDA_1B_1C_1D_1$ взяты соответственно точки $M$ и $N$, причём прямая $MN$ параллельна плоскости $BDC_1$ и $AM:AD = 1:5$. Найдите отношение $CN:CA_1$.
Прислать комментарий     Решение


Задача 110246

Темы:   [ Параллелепипеды (прочее) ]
[ Построения на проекционном чертеже ]
[ Построение сечений ]
Сложность: 4
Классы: 10,11

Точки M , N и K принадлежат соответственно рёбрам CD , AD и BB1 параллелепипеда ABCDA1B1C1D1 , причём CM:MD = 1:2 , AN = ND , BK:KB1 = 2:1 . Постройте сечение параллелепипеда плоскостью, проходящей через точки M , N , K . В каком отношении эта плоскость делит ребро AA1 и диагональ BD1 параллелепипеда?
Прислать комментарий     Решение


Задача 110247

Темы:   [ Параллелепипеды (прочее) ]
[ Построения на проекционном чертеже ]
[ Построение сечений ]
Сложность: 4
Классы: 10,11

Точки M , N и K принадлежат соответственно рёбрам AA1 , DD1 и BC параллелепипеда ABCDA1B1C1D1 , причём AM:MA1 = 1:2 , DN:ND1 = 2:1 , BK = KC . Постройте сечение параллелепипеда плоскостью, проходящей через точки M , N , K . В каком отношении эта плоскость делит ребро CC1 и диагональ DB1 параллелепипеда?
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 57]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .