ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

На сторонах AB, BC и CA треугольника ABC взяты точки P, Q и R соответственно. Докажите, что центры описанных окружностей треугольников APR, BPQ и CQR образуют треугольник, подобный треугольнику ABC.

Вниз   Решение


Дан треугольник ABC. Найдите все такие точки P, что площади треугольников ABP, BCP и ACP равны.

ВверхВниз   Решение


Натуральное число n таково, что числа  2n + 1  и  3n + 1  являются квадратами. Может ли при этом число  5n + 3  быть простым?

ВверхВниз   Решение


В треугольнике ABC проведены биссектриса AK, медиана BL и высота CM. Треугольник KLM – равносторонний.
Докажите, что треугольник ABC – равносторонний.

ВверхВниз   Решение


Корабль с постоянной скоростью проплывает мимо небольшого острова. Капитан каждый час измеряет расстояние до острова.
В 12, 14 и 15 часов расстояния равнялись 7, 5 и 11 километров соответственно.
Каким было расстояние до острова в 13 часов? Чему оно будет равно в 16 часов?

ВверхВниз   Решение


Основание пирамиды – равнобедренный треугольник с углом α при вершине. Все двугранные углы при основании пирамиды равны β . Найдите объём пирамиды, если радиус окружности, описанной около треугольника основания, равен R , а высота пирамиды проходит через точку, лежащую внутри треугольника.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 151]      



Задача 87343

Темы:   [ Объем тетраэдра и пирамиды ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Основанием пирамиды SABC является правильный треугольник, сторона которого равна 1. Основанием высоты, опущенной из вершины S , является точка O , лежащая внутри треугольника ABC . Расстояние от точки O до стороны CA равно , а расстояние от O до AB относится к расстоянию от O до BC как 3:4 . Площадь грани SBC равна . Найдите объём пирамиды.
Прислать комментарий     Решение


Задача 87435

Темы:   [ Объем тетраэдра и пирамиды ]
[ Правильная пирамида ]
Сложность: 3
Классы: 10,11

Боковое ребро правильной треугольной пирамиды наклонено к плоскости основания под углом 45o . Найдите сторону основания, если объём пирамиды равен 18.
Прислать комментарий     Решение


Задача 109238

Темы:   [ Объем тетраэдра и пирамиды ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 10,11

Основание пирамиды – равнобедренный треугольник с углом ϕ при вершине. Все боковые рёбра пирамиды равны a . Найдите объём пирамиды, если радиус окружности, вписанной в треугольник основания, равен r .
Прислать комментарий     Решение


Задача 109239

Темы:   [ Объем тетраэдра и пирамиды ]
[ Вписанные и описанные окружности ]
Сложность: 3
Классы: 10,11

Основание пирамиды – равнобедренный треугольник с углом α при вершине. Все двугранные углы при основании пирамиды равны β . Найдите объём пирамиды, если радиус окружности, описанной около треугольника основания, равен R , а высота пирамиды проходит через точку, лежащую внутри треугольника.
Прислать комментарий     Решение


Задача 109375

Темы:   [ Объем тетраэдра и пирамиды ]
[ Прямоугольный тетраэдр ]
Сложность: 3
Классы: 10,11

Боковые рёбра треугольной пирамиды попарно перпендикулярны и равны a , b и c . Найдите объём пирамиды.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 151]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .