|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||
|
Версия для печати
Убрать все задачи Рассмотрим всевозможные равносторонние треугольники PKM, вершина P которых фиксирована, а вершина K лежит в данном квадрате. Найдите геометрическое место вершин M. Имеется 100 камней. Два игрока берут по очереди от 1 до 5 камней. Проигрывает тот, кто берет последний камень. ABCD – выпуклый четырёхугольник. Окружности, построенные на отрезках AB и CD как на диаметрах, касаются внешним образом в точке M , отличной от точки пересечения диагоналей четырёхугольника. Окружность, проходящая через точки A , M и C , вторично пересекает прямую, соединяющую точку M и середину AB в точке K , а окружность, проходящая через точки B , M и D , вторично пересекает ту же прямую в точке L . Докажите, что |MK-ML| = |AB-CD| . |
Страница: << 1 2 3 4 [Всего задач: 16]
Страница: << 1 2 3 4 [Всего задач: 16] |
||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|