ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На бесконечной шахматной доске на двух соседних по диагонали чёрных полях стоят две чёрные шашки. Можно ли дополнительно поставить на эту доску некоторое число чёрных шашек и одну белую таким образом, чтобы белая одним ходом взяла все чёрные шашки, включая две первоначально стоявшие?

Вниз   Решение


На стороне AB треугольника ABC взята точка P, отличная от точек A и B, а на сторонах BC и AC – точки Q и R соответственно, причём четырёхугольник PQCR – параллелограмм. Пусть отрезки AQ и PR пересекаются в точке M, а отрезки BR и PQ – в точке N. Докажите, что сумма площадей треугольников AMP и BNP равна площади треугольника CQR.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 200]      



Задача 56482

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Подобные треугольники (прочее) ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 9

Через произвольную точку P стороны AC треугольника ABC параллельно его медианам AK и CL проведены прямые, пересекающие стороны BC и AB в точках E и F соответственно. Докажите, что медианы AK и CL делят отрезок EF на три равные части.

Прислать комментарий     Решение

Задача 79555

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 3+
Классы: 9,10

В треугольнике ABC на сторонах AB, BC и AC взяты соответственно точки M, K и L так, что прямая MK параллельна прямой AC и ML параллельна BC. При этом отрезок BL пересекает отрезок MK в точке P, а AK пересекает ML в точке Q. Докажите, что отрезки PQ и AB параллельны.

Прислать комментарий     Решение

Задача 108099

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Перегруппировка площадей ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

На стороне AB треугольника ABC взята точка P, отличная от точек A и B, а на сторонах BC и AC – точки Q и R соответственно, причём четырёхугольник PQCR – параллелограмм. Пусть отрезки AQ и PR пересекаются в точке M, а отрезки BR и PQ – в точке N. Докажите, что сумма площадей треугольников AMP и BNP равна площади треугольника CQR.

Прислать комментарий     Решение

Задача 108516

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Пересекающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол B прямой, точка M лежит на стороне AC, причём  AM : MC = 1 : 3, ∠ABM = π/6BM = 6.
Найдите угол BAC и расстояние между центрами описанных окружностей треугольников BCM и BAM.

Прислать комментарий     Решение

Задача 108517

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Пересекающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC угол B прямой, точка M лежит на стороне AC, причём  AM : MC = : 4.  Величина угла ABM равна  π/3BM = 8.
Найдите величину угла BAC и расстояние между центрами описанных окружностей треугольников BCM и BAM.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 200]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .