ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На клетчатой бумаге изобразите шестиугольник, который можно одним прямолинейным разрезом разделить на четыре равных треугольника. Покажите, как это можно сделать. (Вершины многоугольника должны располагаться в узлах сетки, но стороны и разрез не обязательно проводить по линиям сетки.)

Вниз   Решение


Мальчик Стёпа говорит: позавчера мне было 10 лет, а в следующем году мне исполнится 13. Может ли такое быть?

ВверхВниз   Решение


В забеге от Воробьёвых гор до Красной площади приняли участие три спортсмена. Сначала стартовал Гриша, затем – Саша, и последней – Лена. После финиша выяснилось, что во время забега Гриша обгонял других 10 раз, Лена – 6 раз, Саша – 4 раза, причём все трое ни разу не оказывались в одной точке одновременно. В каком порядке финишировали спортсмены, если известно, что они пришли к финишу в разное время?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 61]      



Задача 104045

Темы:   [ Правило произведения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2-
Классы: 7,8

  а) Сколькими способами Дима сможет покрасить пять ёлок в серебристый, зеленый и синий цвета, если количество краски у него неограничено, а каждую ёлку он красит только в один цвет?
  б) У Димы есть пять шариков: красный, зеленый, желтый, синий и золотой. Сколькими способами он сможет украсить ими пять ёлок, если на каждую требуется надеть ровно один шарик?
  в) А если можно надевать несколько шариков на одну ёлку (и все шарики должны быть использованы)?

Прислать комментарий     Решение

Задача 104073

Темы:   [ Текстовые задачи (прочее) ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 5,6,7,8

В забеге от Воробьёвых гор до Красной площади приняли участие три спортсмена. Сначала стартовал Гриша, затем – Саша, и последней – Лена. После финиша выяснилось, что во время забега Гриша обгонял других 10 раз, Лена – 6 раз, Саша – 4 раза, причём все трое ни разу не оказывались в одной точке одновременно. В каком порядке финишировали спортсмены, если известно, что они пришли к финишу в разное время?

Прислать комментарий     Решение

Задача 60400

 [Полиномиальная теорема]
Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3-
Классы: 9,10,11

Докажите, что в равенстве   (x1 + ... + xm)n  =   коэффициенты  C(k1,..., km)  могут быть найдены по формуле  

Прислать комментарий     Решение

Задача 30741

Темы:   [ Правило произведения ]
[ Перестановки и подстановки (прочее) ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 6,7,8

а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться).
б) Найдите сумму всех семизначных чисел, которые можно получить всевозможными перестановками цифр 1, ..., 7.

Прислать комментарий     Решение

Задача 30749

Темы:   [ Сочетания и размещения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3
Классы: 7,8,9

Имеется куб размером 10×10×10, состоящий из маленьких единичных кубиков. В центре O одного из угловых кубиков сидит кузнечик. Он может прыгать в центр кубика, имеющего общую грань с тем, в котором кузнечик находится в данный момент; причём так, чтобы расстояние до точки O увеличивалось. Сколькими способами кузнечик может допрыгать до кубика, противоположного исходному?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 61]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .