ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На белых и чёрных клетках доски 10×10 стоит по одинаковому количеству ладей так, что никакие две ладьи друг друга не бьют.
Докажите, что на эту доску можно поставить еще одну ладью так, чтобы она не била никакую из уже стоящих.

Вниз   Решение


Конфеты "Сладкая математика" продаются по 12 штук в коробке, а конфеты "Геометрия с орехами" – по 15 штук в коробке.
Какое наименьшее число коробок конфет того и другого сорта необходимо купить, чтобы тех и других конфет было поровну?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 277]      



Задача 103945

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2
Классы: 5,6,7

Конфеты "Сладкая математика" продаются по 12 штук в коробке, а конфеты "Геометрия с орехами" – по 15 штук в коробке.
Какое наименьшее число коробок конфет того и другого сорта необходимо купить, чтобы тех и других конфет было поровну?

Прислать комментарий     Решение

Задача 30371

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 6,7,8

Докажите, что для любых натуральных чисел a и b верно равенство  НОД(a, b)НОК(a, b) = ab.

Прислать комментарий     Решение

Задача 35289

Темы:   [ НОД и НОК. Взаимная простота ]
[ Обыкновенные дроби ]
Сложность: 2+
Классы: 7,8,9

Доказать, что дробь $\frac{12n+1}{30n+1}$ несократима.

Прислать комментарий     Решение

Задача 60497

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 8,9

Может ли наибольший общий делитель двух натуральных чисел быть больше их разности?

Прислать комментарий     Решение

Задача 60498

Тема:   [ НОД и НОК. Взаимная простота ]
Сложность: 2+
Классы: 8,9,10

Докажите, что  (bc, ac, ab)  делится на  (a, b, c)².

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 277]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .