|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи
В витрине ювелирного магазина стоит манекен, на шею которого надето ожерелье. Оно состоит из N колечек, нанизанных на замкнутую нить. Все колечки имеют разные размеры. В зависимости от размера колечки пронумерованы числами от 1 до N, начиная с самого маленького и до самого большого. Колечки можно передвигать вдоль нити и протаскивать одно через другое, но только в том случае, если номера этих колечек отличаются более чем на единицу. Продавец хочет упорядочить колечки так, чтобы они располагались по возрастанию номеров вдоль нити по часовой стрелке. Снимать ожерелье с манекена нельзя. Требуется написать программу, которая по заданному начальному расположению колечек находит последовательность протаскиваний колечек одно через другое, приводящую исходное расположение колечек в желаемое. Формат входных данных В первой строке входного файла записано число N (2 ≤ N ≤ 50). Во второй строке через пробел следуют N различных чисел от 1 до N - номера колечек, расположенных вдоль нити по часовой стрелке. Формат выходных данных Выходной файл должен содержать описание процесса упорядочения. В каждой строке, кроме последней, должны быть записаны через пробел два числа, указывающие номера колечек, протаскиваемых друг через друга. В последней строке должен стоять ноль. Количество строк выходного файла не должно превышать 50000. Если требуемого упорядочения колечек достичь не удается, в выходной файл нужно вывести одно число √1. Пример
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 277]
Очень скучно смотреть на черно-белый циферблат, поэтому Клайв ровно в полдень закрасил число 12 красным цветом и решил через каждые 57 часов закрашивать текущий час в красный цвет.
Сколько существует пар натуральных чисел, у которых наименьшее общее кратное (НОК) равно 2000?
С 1 сентября четыре школьника начали посещать кинотеатр. Первый бывал в нём каждый четвёртый день, второй – каждый пятый, третий – каждый шестой и четвёртый – каждый девятый. Когда второй раз все школьники встретятся в кинотеатре?
Докажите, что (5a + 3b, 13a + 8b) = (a, b).
Докажите, что для нечётных чисел a, b и c имеет место равенство (½ (b + c), ½ (a + c), ½ (a + b)) = (a, b, c).
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 277] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|