ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

На плоскости даны пять точек, из которых никакие три не лежат на одной прямой.
Докажите, что некоторые четыре из этих точек являются вершинами выпуклого четырёхугольника.

Вниз   Решение


В треугольнике ABC известно, что AB = AC, высота AH равна 9, а диаметр описанной окружности равен 25. Найдите радиус вписанной окружности.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 127]      



Задача 98611

Темы:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема синусов ]
[ Неравенства для углов треугольника ]
Сложность: 3+
Классы: 10,11

В треугольнике ABC взяли точку M так, что что радиусы описанных окружностей треугольников AMC, BMC и BMA не меньше радиуса описанной окружности треугольника ABC. Докажите, что все четыре радиуса равны.

Прислать комментарий     Решение

Задача 102319

Темы:   [ Площадь круга, сектора и сегмента ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

Докажите или опровергните следующее утверждение: круг площадью $ {\frac{25}{8}}$ можно поместить внутрь треугольника со сторонами 3, 4 и 5.
Прислать комментарий     Решение


Задача 102493

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике боковая сторона равна 20, а диаметр описанной окружности равен 25. Найдите радиус вписанной окружности.

Прислать комментарий     Решение


Задача 102494

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC известно, что AB = AC, высота AH равна 9, а диаметр описанной окружности равен 25. Найдите радиус вписанной окружности.

Прислать комментарий     Решение


Задача 108971

Темы:   [ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Доказать, что если в треугольнике ABC со стороной  BC = 1  радиус ra вневписанной окружности вдвое больше радиуса r вписанной окружности, то площадь треугольника численно равна 2r.

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 127]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .