ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В выпуклом шестиугольнике AC1BA1CB1   AB1 = AC1BC1 = BA1CA1 = CB1  и  ∠A + ∠B + ∠C = ∠A1 + ∠B1 + ∠C1.
Докажите, что площадь треугольника ABC равна половине площади шестиугольника.

Вниз   Решение


Дан треугольник ABC. Точка M, расположенная внутри треугольника, движется параллельно стороне BC до пересечения со стороной CA, затем параллельно AB до пересечения с BC, затем параллельно AC до пересечения с AB и т. д. Докажите, что через некоторое число шагов траектория движения точки замкнется.

ВверхВниз   Решение


Можно ли составить решётку, изображённую на рисунке
  а) из пяти ломаных длины 8?
  б) из восьми ломаных длины 5?
(Длина стороны клетки равна 1.)

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 13]      



Задача 103790

Темы:   [ Наименьшая или наибольшая площадь (объем) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2
Классы: 7

Прямоугольник составлен из шести квадратов (см. правый рисунок). Найдите сторону самого большого квадрата, если сторона самого маленького равна 1.

Прислать комментарий     Решение


Задача 103796

Темы:   [ Наименьшая или наибольшая площадь (объем) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2+
Классы: 7

Фигура на рисунке составлена из квадратов. Найдите сторону левого нижнего, если сторона самого маленького равна 1.

Прислать комментарий     Решение


Задача 35135

Темы:   [ Наименьшая или наибольшая площадь (объем) ]
[ Системы точек ]
Сложность: 3
Классы: 8,9,10

На плоскости синим и красным цветом окрашено несколько точек так, что никакие три точки одного цвета не лежат на одной прямой (точек каждого цвета не меньше трёх). Докажите, что какие-то три точки одного цвета образуют треугольник, на трёх сторонах которого лежит не более двух точек другого цвета.

Прислать комментарий     Решение

Задача 58062

Тема:   [ Наименьшая или наибольшая площадь (объем) ]
Сложность: 4+
Классы: 8,9

На плоскости расположено n точек, причем площадь любого треугольника с вершинами в этих точках не превосходит 1. Докажите, что все эти точки можно поместить в треугольник площади 4.
Прислать комментарий     Решение


Задача 58063

Тема:   [ Наименьшая или наибольшая площадь (объем) ]
Сложность: 4+
Классы: 8,9

Многоугольник M' гомотетичен многоугольнику M с коэффициентом гомотетии -1/2. Докажите, что существует параллельный перенос, переводящий многоугольник M' внутрь многоугольника M.
Прислать комментарий     Решение


Страница: 1 2 3 >> [Всего задач: 13]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .