ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Казаков А.

Хорды $A_1A_2$ и $B_1B_2$ пересекаются в точке $D$. Прямая $A_1B_1$ пересекает серединный перпендикуляр к отрезку $DD'$, где точка $D'$ инверсна к $D$, в точке $C$. Докажите, что $CD\parallel A_2B_2$.

Вниз   Решение


Продавец хочет разрезать кусок сыра на части, которые можно будет разложить на две кучки равного веса. Он умеет разрезать любой кусок сыра в одном и том же отношении  a : (1 – a)  по весу, где  0 < a < 1.  Верно ли, что на любом промежутке длины 0,001 из интервала  (0, 1)  найдётся значение a, при котором он сможет добиться желаемого результата с помощью конечного числа разрезов?

ВверхВниз   Решение


В правильной треугольной пирамиде SABC ( S – вершина) AB=4 , высота SO пирамиды равна . Точка D лежит на отрезке SO , причём SD:DO = 2:9 . Цилиндр, ось которого параллельна прямой SA , расположен так, что точка D – центр его верхнего основания, а точка O лежит на окружности нижнего основания. Найдите площадь части верхнего основания цилиндра, лежащей внутри пирамиды.

ВверхВниз   Решение


Автор: Фольклор

Можно ли начертить два треугольника так, чтобы образовался девятиугольник?

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 221]      



Задача 32092

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
Сложность: 2
Классы: 5,6,7

В каждой клетке прямоугольной таблицы размером M×K написано число. Сумма чисел в каждой строке и в каждом столбце равна 1.
Докажите, что  M = K.

Прислать комментарий     Решение

Задача 88045

Тема:   [ Числовые таблицы и их свойства ]
Сложность: 2
Классы: 5,6,7

Заполните свободные клетки "шестиугольника" (см. рисунок) целыми числами от 1 до 19 так, чтобы во всех вертикальных и диагональных рядах сумма чисел, стоящих в одном ряду, была бы одна и та же.

Прислать комментарий     Решение

Задача 88120

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
Сложность: 2
Классы: 5,6,7

Можно ли таблицу 5×5 заполнить числами так, чтобы сумма чисел в каждой строке была положительной, а сумма чисел в каждом столбце – отрицательной?

Прислать комментарий     Решение

Задача 88140

Темы:   [ Числовые таблицы и их свойства ]
[ Деление с остатком ]
[ Примеры и контрпримеры. Конструкции ]
[ Шахматная раскраска ]
Сложность: 2
Классы: 5,6,7

Даны 16 чисел: 1, 11, 21, 31 и т.д. (каждое следующее на 10 больше предыдущего).
Можно ли расставить их в таблице 4×4 так, чтобы разность каждых двух чисел, стоящих в соседних по стороне клетках, не делилась на 4?

Прислать комментарий     Решение

Задача 88147

Темы:   [ Числовые таблицы и их свойства ]
[ Разбиения на пары и группы; биекции ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6,7

Попробуйте быстро найти сумму всех цифр в этой таблице:

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .