|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Хорды $A_1A_2$ и $B_1B_2$ пересекаются в точке $D$. Прямая $A_1B_1$ пересекает серединный перпендикуляр к отрезку $DD'$, где точка $D'$ инверсна к $D$, в точке $C$. Докажите, что $CD\parallel A_2B_2$. Продавец хочет разрезать кусок сыра на части, которые можно будет разложить на две кучки равного веса. Он умеет разрезать любой кусок сыра в одном и том же отношении a : (1 – a) по весу, где 0 < a < 1. Верно ли, что на любом промежутке длины 0,001 из интервала (0, 1) найдётся значение a, при котором он сможет добиться желаемого результата с помощью конечного числа разрезов? В правильной треугольной пирамиде SABC ( S – вершина) AB=4 , высота SO пирамиды равна Можно ли начертить два треугольника так, чтобы образовался девятиугольник? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 221]
В каждой клетке прямоугольной таблицы размером M×K написано число. Сумма чисел в каждой строке и в каждом столбце равна 1.
Заполните свободные клетки "шестиугольника" (см. рисунок) целыми числами от 1 до 19 так, чтобы во всех вертикальных и диагональных рядах сумма чисел, стоящих в одном ряду, была бы одна и та же.
Можно ли таблицу 5×5 заполнить числами так, чтобы сумма чисел в каждой строке была положительной, а сумма чисел в каждом столбце – отрицательной?
Даны 16 чисел: 1, 11, 21, 31 и т.д. (каждое следующее на 10 больше предыдущего).
Попробуйте быстро найти сумму всех цифр в этой таблице:
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 221] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|