|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Произведение 22 целых чисел равно 1. Докажите, что их сумма не равна нулю. Найдите наименьшее число, дающее следующие остатки: 1 – при делении на 2, 2 – при делении на 3, 3 – при делении на 4, 4 – при делении на 5, 5 – при делении на 6. На доске 25×25 расставлены 25 шашек, причём их расположение симметрично относительно обеих главных диагоналей. |
Страница: 1 2 >> [Всего задач: 9]
Внутри угла AOB, равного 120°, проведены лучи OC и OD так, что каждый из них является биссектрисой какого-то из углов, получившихся на чертеже. Найдите величину угла AOC, указав все возможные варианты.
На стороне AC остроугольного треугольника ABC выбраны точки
M и K так, что ∠ABM = ∠CBK.
Докажите, что никакая прямая не может пересечь все три стороны треугольника (в точках, отличных от вершин).
Петя умеет на любом отрезке отмечать точки, которые делят этот отрезок пополам или в отношении n : (n + 1), где n – любое натуральное число. Петя утверждает, что этого достаточно, чтобы на любом отрезке отметить точку, которая делит его в любом заданном рациональном отношении. Прав ли он?
Дано бесконечное число углов. Докажите, что этими углами можно покрыть плоскость.
Страница: 1 2 >> [Всего задач: 9] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|