ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что если число  n! + 1  делится на  n + 1,  то  n + 1  – простое число.

Вниз   Решение


Окружность S касается окружностей S1 и S2 в точках A1 и A2.
Докажите, что прямая A1A2 проходит через точку пересечения общих внешних или общих внутренних касательных к окружностям S1 и S2.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 75506

Темы:   [ Неприводимые многочлены ]
[ Комплексные числа помогают решить задачу ]
Сложность: 5+
Классы: 11

Пусть  p = am10m + am–110m–1 + ... + a0  – простое число, записанное в десятичной системе счисления. Докажите, что многочлен
P(x) = amxm + am–1xm–1 + ... + a1x + a0  неприводим над целыми числами.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .