|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Классы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Куб разбит на прямоугольные параллелепипеды так, что для любых двух параллелепипедов их проекции на некоторую грань куба перекрываются (то есть пересекаются по фигуре ненулевой площади). Докажите, что для любых трёх параллелепипедов найдётся такая грань куба, что проекции каждых двух из них на эту грань не перекрываются. |
Страница: 1 2 3 >> [Всего задач: 12]
В треугольнике ABC биссектриса AK перпендикулярна медиане CL.
Диагонали вписанного четырёхугольника ABCD пересекаются в точке O. Описанные окружности треугольников AOB и COD пересекаются в точке M на стороне AD. Докажите, что точка O – центр вписанной окружности треугольника BMC.
Циркулем и линейкой разбейте данный треугольник на два меньших треугольника с одинаковой суммой квадратов сторон.
Внутри угла AOD проведены лучи OB и OC, причём ∠AOB = ∠COD. В углы AOB и COD вписаны непересекающиеся окружности.
Биссектрисы AA1 и CC1 прямоугольного треугольника ABC (∠B = 90°) пересекаются в точке I. Прямая, проходящая через точку C1 и перпендикулярная прямой AA1, пересекает прямую, проходящую через A1 и перпендикулярную CC1, в точке K. Докажите, что середина отрезка KI лежит на отрезке AC.
Страница: 1 2 3 >> [Всего задач: 12] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|