ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 116587  (#10.1)

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Перебор случаев ]
Сложность: 3
Классы: 8,9,10

Даны десять положительных чисел, каждые два из которых различны. Докажите, что среди них найдутся либо три числа, произведение которых больше произведения каких-нибудь двух из оставшихся, либо три числа, произведение которых больше произведения каких-нибудь четырёх из оставшихся.

Прислать комментарий     Решение

Задача 116588  (#10.2)

Темы:   [ Шестиугольники ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 8,9,10

Дан выпуклый шестиугольник ABCDEF. Известно, что  ∠FAE = ∠BDC,  а четырёхугольники ABDF и ACDE являются вписанными.
Докажите, что прямые BF и CE параллельны.

Прислать комментарий     Решение

Задача 116589  (#10.3)

Темы:   [ Числовые последовательности (прочее) ]
[ Линейные рекуррентные соотношения ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10

Последовательность чисел  a1, a2, ...  задана условиями  a1 = 1,  a2 = 143  и     при всех  n ≥ 2.
Докажите, что все члены последовательности – целые числа.

Прислать комментарий     Решение

Задача 116590  (#10.4)

Темы:   [ Системы точек и отрезков (прочее) ]
[ Четность и нечетность ]
[ Индукция в геометрии ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10

Автор: Шмаров В.

На окружности отмечено 2N точек (N – натуральное число). Известно, что через любую точку внутри окружности проходит не более двух хорд с концами в отмеченных точках. Назовем паросочетанием такой набор из N хорд с концами в отмеченных точках, что каждая отмеченная точка является концом ровно одной из этих хорд. Назовём паросочетание чётным, если количество точек, в которых пересекаются его хорды, чётно, и нечётным иначе. Найдите разность между количеством чётных и нечётных паросочетаний.

Прислать комментарий     Решение

Задача 116591  (#10.5)

Темы:   [ Пятиугольники ]
[ Тригонометрический круг ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Доказательство от противного ]
Сложность: 3
Классы: 8,9,10

Дан выпуклый пятиугольник. Петя выписал в тетрадь значения синусов всех его углов, а Вася – значения косинусов всех его углов. Оказалось, что среди выписанных Петей чисел нет четырёх различных. Могут ли все числа, выписанные Васей, оказаться различными?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .