|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан равносторонний треугольник ABC. Из его внутренней точки M опущены перпендикуляры MA', MB', MC' на стороны. Пусть n > 1 – натуральное число. Выпишем дроби 1/n, 2/n, ..., n–1/n и приведём каждую к несократимому виду; сумму числителей полученных дробей обозначим через f(n). При каких натуральных n > 1 числа f(n) и f(2015n) имеют разную чётность? |
Страница: 1 [Всего задач: 1]
Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.
Страница: 1 [Всего задач: 1] |
|||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|