ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 57034

Тема:   [ Четырехугольники (прочее) ]
Сложность: 4
Классы: 9

Середины M и N диагоналей AC и BD выпуклого четырехугольника ABCD не совпадают. Прямая MN пересекает стороны AB и CD в точках M1 и N1. Докажите, что если MM1 = NN1, то AD| BC.
Прислать комментарий     Решение


Задача 57035

Темы:   [ Подобные фигуры ]
[ Четырехугольники (прочее) ]
[ Преобразования подобия (прочее) ]
[ Против большей стороны лежит больший угол ]
Сложность: 5-
Классы: 9,10,11

Докажите, что два четырехугольника подобны тогда и только тогда, когда у них равны четыре соответственных угла и соответственные углы между диагоналями.
Прислать комментарий     Решение


Задача 57038

Тема:   [ Четырехугольники (прочее) ]
Сложность: 5
Классы: 9

Выпуклый четырехугольник разделен диагоналями на четыре треугольника. Докажите, что прямая, соединяющая точки пересечения медиан двух противоположных треугольников, перпендикулярна прямой, соединяющей точки пересечения высот двух других треугольников.
Прислать комментарий     Решение


Задача 57039

Тема:   [ Четырехугольники (прочее) ]
Сложность: 5
Классы: 9

Диагонали описанной трапеции ABCD с основаниями AD и BC пересекаются в точке O. Радиусы вписанных окружностей треугольников  AOD, AOB, BOC и COD равны  r1, r2, r3 и r4 соответственно. Докажите, что $ {\frac{1}{r_1}}$ + $ {\frac{1}{r_3}}$ = $ {\frac{1}{r_2}}$ + $ {\frac{1}{r_4}}$.
Прислать комментарий     Решение


Задача 57040

Тема:   [ Четырехугольники (прочее) ]
Сложность: 5
Классы: 9

Окружность радиуса r1 касается сторон DA, AB и BC выпуклого четырехугольника ABCD, окружность радиуса r2 — сторон AB, BC и CD; аналогично определяются r3 и r4. Докажите, что  $ {\frac{AB}{r_1}}$ + $ {\frac{CD}{r_3}}$ = $ {\frac{BC}{r_2}}$ + $ {\frac{AD}{r_4}}$.
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .