ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 78480

Тема:   [ Четырехугольник (неравенства) ]
Сложность: 4
Классы: 9,10

Можно ли в прямоугольник с отношением сторон 9 : 16 вписать прямоугольник с отношением сторон 4 : 7 (так, чтобы на каждой стороне первого прямоугольника лежала вершина второго)?
Прислать комментарий     Решение


Задача 78485

Темы:   [ Тригонометрические неравенства ]
[ Тождественные преобразования (тригонометрия) ]
[ Обратные тригонометрические функции ]
Сложность: 4
Классы: 10,11

Положительные числа x, y, z обладают тем свойством, что

arctg x + arctg y + arctg z < $\displaystyle \pi$.

Доказать, что сумма этих чисел больше их произведения.
Прислать комментарий     Решение

Задача 78487

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
[ Перестановки и подстановки (прочее) ]
Сложность: 4
Классы: 10,11

Из цифр 1, 2, 3, 4, 5, 6, 7 составляются всевозможные семизначные числа, в записи которых каждая из этих цифр встречается ровно один раз.
Доказать, что сумма всех таких чисел делится на 9.

Прислать комментарий     Решение

Задача 78495

Темы:   [ ГМТ с ненулевой площадью ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Вписанные и описанные окружности ]
[ Вспомогательные подобные треугольники ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4
Классы: 8,9,10

Найти множество центров тяжести всех остроугольных треугольников, вписанных в данную окружность.

Прислать комментарий     Решение

Задача 78496

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Принцип Дирихле (прочее) ]
Сложность: 4
Классы: 8,9

Какое наибольшее количество чисел можно выбрать из набора 1, 2,..., 1963, чтобы сумма никаких двух чисел не делилась на их разность?
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .