ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

У Чебурашки есть набор из 36 камней массами 1 г, 2 г, ..., 36 г, а у Шапокляк есть суперклей, одной каплей которого можно склеить два камня в один (соответственно, можно склеить три камня двумя каплями и так далее). Шапокляк хочет склеить камни так, чтобы Чебурашка не смог из получившегося набора выбрать один или несколько камней общей массой 37 г. Какого наименьшего количества капель клея ей хватит, чтобы осуществить задуманное?

   Решение

Задачи

Страница: 1 [Всего задач: 3]      



Задача 77870

Темы:   [ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
Сложность: 3+
Классы: 7,8,9,10

Если число     – целое, то и число     – целое. Доказать.

Прислать комментарий     Решение

Задача 77871

Тема:   [ Логарифмические неравенства ]
Сложность: 4
Классы: 10,11

Доказать без помощи таблиц, что

$\displaystyle {\frac{1}{\log_2\pi}}$ + $\displaystyle {\frac{1}{\log_5\pi}}$ > 2.

Прислать комментарий     Решение

Задача 77872

Темы:   [ Неравенства с трехгранными углами ]
[ Пирамида (прочее) ]
[ Неравенства с углами ]
Сложность: 4
Классы: 10,11

Даны две треугольные пирамиды ABCD и A'BCD с общим основанием BCD, причем точка A' лежит внутри пирамиды ABCD. Доказать, что сумма плоских углов при вершине A' пирамиды A'BCD больше суммы плоских углов при вершине A пирамиды ABCD.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .