ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 >> [Всего задач: 11]      



Задача 76456

Темы:   [ Свойства коэффициентов многочлена ]
[ Четность и нечетность ]
[ Целочисленные и целозначные многочлены ]
[ Арифметика остатков (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 8,9,10

Даны два многочлена от переменной x с целыми коэффициентами. Произведение их есть многочлен от переменной x с чётными коэффициентами, не все из которых делятся на 4. Доказать, что в одном из многочленов все коэффициенты чётные, а в другом – хоть один нечётный.

Прислать комментарий     Решение

Задача 76451

Темы:   [ Геометрические интерпретации в алгебре ]
[ Тождественные преобразования (тригонометрия) ]
[ Вспомогательные проекции ]
[ Правильные многоугольники ]
Сложность: 4
Классы: 9,10

Доказать, что  cos /5 + cos /5 = – ½.

Прислать комментарий     Решение

Задача 76452

Тема:   [ Построения (прочее) ]
Сложность: 4
Классы: 8,9

Даны три точки A, B, C. Через точку A провести прямую так, чтобы сумма расстояний от точек B и C до этой прямой была равна заданному отрезку.
Прислать комментарий     Решение


Задача 76457

Тема:   [ Окружности (построения) ]
Сложность: 5
Классы: 8,9

Даны две точки A и B и окружность. Найти на окружности точку X так, чтобы прямые AX и BX отсекли на окружности хорду CD, параллельную данной прямой MN.
Прислать комментарий     Решение


Задача 76459

Тема:   [ Правильная пирамида ]
Сложность: 5
Классы: 10,11

Дана правильная пирамида. Из произвольной точки P её основания восставлен перпендикуляр к плоскости основания. Доказать, что сумма отрезков от точки P до точек пересечения перпендикуляра с плоскостями граней пирамиды не зависит от выбора точки P на основании.
Прислать комментарий     Решение


Страница: << 1 2 3 >> [Всего задач: 11]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .