ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Один из корней уравнения x³ – 6x² + ax – 6 = 0 равен 3. Решите уравнение. |
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 176]
Решите задачу 5.85, а) с помощью теоремы Менелая.
Окружность S касается окружностей S1 и S2 в точках A1 и A2.
а) Серединный перпендикуляр к биссектрисе AD
треугольника ABC пересекает прямую BC в точке E. Докажите,
что
BE : CE = c2 : b2.
Из вершины C прямого угла треугольника ABC опущена
высота CK, и в треугольнике ACK проведена биссектриса CE. Прямая,
проходящая через точку B параллельно CE, пересекает CK в
точке F. Докажите, что прямая EF делит отрезок AC пополам.
На прямых BC, CA и AB взяты точки A1, B1 и C1,
причем точки A1, B1 и C1 лежат на одной прямой. Прямые,
симметричные прямым AA1, BB1 и CC1 относительно соответствующих
биссектрис треугольника ABC, пересекают прямые BC, CA и AB в
точках A2, B2 и C2. Докажите, что точки A2, B2 и C2 лежат
на одной прямой.
Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 176]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке