ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 557]      



Задача 65945

Темы:   [ Обыкновенные дроби ]
[ Тождественные преобразования ]
[ Разложение на множители ]
Сложность: 3
Классы: 7,8,9

Известно, что  1/a1/b = 1/a+b.  Докажите, что  1/a²1/b² = 1/ab.

Прислать комментарий     Решение

Задача 65946

Темы:   [ Ромбы. Признаки и свойства ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 3
Классы: 8,9

Можно ли произвольный ромб разрезать не более, чем на две части так, чтобы из этих частей сложить прямоугольник?

Прислать комментарий     Решение

Задача 65959

Темы:   [ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Верно ли, что любое положительное чётное число можно представить в виде произведения целых чисел, сумма которых равна нулю?

Прислать комментарий     Решение

Задача 65961

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 9,10

В равнобедренном треугольнике АВС с основанием ВС проведена биссектриса CL. Докажите, что  CL < 2BL.

Прислать комментарий     Решение

Задача 65969

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
[ Медиана, проведенная к гипотенузе ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 9,10

Две окружности касаются друг друга в точке C и прямой l в точках A и B. Прямая ВC пересекает вторую окружность в точке D.
Докажите, что угол BАD – прямой.

Прислать комментарий     Решение

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 557]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .