|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов. В Анчурии проходит единый государственный экзамен. Вероятность угадать верный ответ на каждый вопрос экзамена равна 0,25. В 2011 году, чтобы получить аттестат, нужно было ответить верно на три вопроса из 20. В 2012 году Управление школ Анчурии решило, что три вопроса это мало. Теперь нужно верно ответить на шесть вопросов из 40. Спрашивается, если ничего не знать, а просто угадывать ответы, в каком году вероятность получить анчурийский аттестат выше – в 2011 или в 2012? Квадратная таблица размером n×n заполнена неотрицательными числами так, что как сумма чисел каждой строки, так и сумма чисел каждого столбца равна 1. Докажите, что из таблицы можно выбрать n положительных чисел, никакие два из которых не стоят ни в одном столбце, ни в одной строке. |
Страница: 1 2 3 4 5 >> [Всего задач: 21]
Пусть m и n – целые числа. Докажите, что mn(m + n) – чётное число.
Каждый из людей, когда-либо живших на земле, сделал определённое число рукопожатий.
В прямоугольном треугольнике длины сторон – натуральные взаимно простые числа.
На доске написано 10 плюсов и 15 минусов. Разрешается стереть любые два знака и написать вместо них плюс, если они одинаковы, и минус в противном случае. Какой знак останется на доске после выполнения 24 таких операций?
Из шахматной доски вырезали две клетки – a1 и h8. Можно ли оставшуюся часть доски покрыть 31 косточкой домино так, чтобы каждая косточка покрывала ровно две клетки доски?
Страница: 1 2 3 4 5 >> [Всего задач: 21] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|