|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан многочлен P(x) степени 2003 с действительными коэффициентами, причем старший коэффициент равен 1. Имеется бесконечная последовательность целых чисел a1, a2, ..., такая, что P(a1) = 0, P(a2) = a1, P(a3) = a2 и т. д. Докажите, что не все числа в последовательности a1, a2, ... различны. Докажите, что прямая, проходящая через точки z1 и
z2 – это геометрическое место точек z, для которых |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42]
Существует ли такое натуральное x, что x² + x + 1 делится на 1985?
Число x оканчивается на 5. Доказать, что x² оканчивается на 25.
Найти последнюю цифру числа 71988 + 91988.
Доказать, что квадрат натурального числа не может оканчиваться на две нечётные цифры.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 42] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|