ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Загадано число от 1 до 144. Разрешается выделить одно подмножество множества чисел от 1 до 144 и спросить, принадлежит ли ему загаданное число. За ответ да надо заплатить 2 рубля, за ответ нет – 1 рубль. Какая наименьшая сумма денег необходима для того, чтобы наверняка угадать число?

Вниз   Решение


Вдоль стены круглой башни по часовой стрелке ходят два стражника, причём первый из них — вдвое быстрее второго. В этой стене, имеющей длину 1, проделаны бойницы. Система бойниц называется надёжной, если в каждый момент времени хотя бы один из стражников находится возле бойницы.

а) Какую наименьшую длину может иметь бойница, если система, состоящая только из этой бойницы, надежна?

б) Докажите, что суммарная длина бойниц любой надёжной системы больше 1/2.

в) Докажите, что для любого числа s>1/2 существует надёжная система бойниц с суммарной длиной, меньшей s.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 52]      



Задача 30795  (#017)

Тема:   [ Планарные графы. Формула Эйлера ]
Сложность: 3+
Классы: 7,8,9

В стране Озёрная семь озер, соединённых между собой десятью непересекающимися каналами, причём от каждого озера можно доплыть до любого другого. Сколько в этой стране островов?

Прислать комментарий     Решение

Задача 30796  (#018)

Темы:   [ Планарные графы. Формула Эйлера ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Подсчет двумя способами ]
Сложность: 4-
Классы: 8,9

В квадрате отметили 20 точек и соединили их непересекающимися отрезками друг с другом и с вершинами квадрата так, что квадрат разбился на треугольники. Сколько получилось треугольников?

Прислать комментарий     Решение

Задача 30797  (#019)

Темы:   [ Планарные графы. Формула Эйлера ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9

Докажите, что для плоского графа справедливо неравенство  2E ≥ 3F.

Прислать комментарий     Решение

Задача 30798  (#020)

Тема:   [ Планарные графы. Формула Эйлера ]
Сложность: 4-
Классы: 9

Докажите, что для плоского связного графа справедливо неравенство  E ≤ 3V – 6.

Прислать комментарий     Решение

Задача 30799  (#021)

Тема:   [ Планарные графы. Формула Эйлера ]
Сложность: 4-
Классы: 9

Докажите, что для любого плоского графа (в том числе и несвязного) справедливо неравенство  E ≤ 3V – 6.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 52]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .