ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 55]      



Задача 30698  (#012)

Темы:   [ Задачи с ограничениями ]
[ Сочетания и размещения ]
Сложность: 2+
Классы: 7,8

В классе, в котором учатся Петя и Ваня – 31 человек. Сколькими способами можно выбрать из класса футбольную команду (11 человек) так, чтобы Петя и Ваня не входили в команду одновременно?

Прислать комментарий     Решение

Задача 30699  (#013)

Темы:   [ Сочетания и размещения ]
[ Задачи с ограничениями ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно переставить буквы слова "ЭПИГРАФ" так, чтобы и гласные, и согласные шли в алфавитном порядке?

Прислать комментарий     Решение

Задача 30700  (#014)

Темы:   [ Задачи с ограничениями ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 7,8

Из 12 девушек и 10 юношей выбирают команду, состоящую из пяти человек.
Сколькими способами можно выбрать эту команду так, чтобы в нее вошло не более трёх юношей?

Прислать комментарий     Решение

Задача 30701  (#015)

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно расставить 12 белых и 12 чёрных шашек на чёрных полях шахматной доски?

Прислать комментарий     Решение

Задача 30702  (#016)

Темы:   [ Раскладки и разбиения ]
[ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 7,8

а) Сколькими способами можно разбить 15 человек на три команды по пять человек в каждой?
б) Сколькими способами можно выбрать из 15 человек две команды по пять человек в каждой?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 55]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .