ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Даны цело численный массив А [1: n] и число М. Найти множество элементов А [i1], А [i2], ..., А [ik] (1< i1 < ... < ik < n), что А [i1] + А [i2] + ... А [ik] = М. Предполагается, что такое множество заведомо существует. |
Страница: 1 [Всего задач: 5]
На квадратном клетчатом листе бумаги размером 100 * 100 клеток нарисовано несколько прямоугольников. Каждый прямоугольник состоит из целых клеток, различные прямоугольники не накладываются друг на друга и не соприкасаются (см. пример на рис.). Задан массив размером 100 * 100, в котором элемент А [i, j] = 1, если клетка [i, j] принадлежит какому - либо прямоугольнику, и А [i, j] = 0 в противном случае. Написать программу, которая сосчитает и напечатает число прямоугольников.
Напечатать в порядке возрастания все простые несократимые дроби, заключенные между 0 и 1, знаменатели которых не превышают 7.
Даны цело численный массив А [1: n] и число М. Найти множество элементов А [i1], А [i2], ..., А [ik] (1< i1 < ... < ik < n), что А [i1] + А [i2] + ... А [ik] = М. Предполагается, что такое множество заведомо существует.
Дан одномерный массив. Все его элементы, не равные нулю, переписать (сохраняя их порядок) в начало массива, а нулевые элементы - в конец массива (новый массив не заводить).
Задан числовой массив А [1:m, 1:n]. Некоторый элемент этого массива назовем седловой точкой, если он является одновременно наименьшим в своей строке и наибольшим в своем столбце. Напечатать номера строки и столбца какой-нибудь седловой точки и напечатать число 0, если такой точки нет .
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке