ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Доказать, что в прямоугольник размером 2n×2m (n и m — целые) можно уложить в два слоя кости домино размером 1×2 так, чтобы каждый слой полностью покрывал прямоугольник и чтобы никакие две кости из разных слоёв не совпадали друг с другом.

Вниз   Решение


Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета на расстоянии 2004 м.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 88302  (#5.6)

Темы:   [ Комбинаторная геометрия (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Раскраски ]
Сложность: 2+
Классы: 6,7,8

Плоскость раскрашена в два цвета. Докажите, что найдутся две точки одного цвета на расстоянии 2004 м.
Прислать комментарий     Решение


Задача 88303  (#5.7)

Темы:   [ Десятичная система счисления ]
[ Арифметика. Устный счет и т.п. ]
Сложность: 2+
Классы: 6,7

Все натуральные числа, начиная с единицы, записаны в порядке возрастания 1234567891011121314…… . Какая цифра стоит на сотом месте, а какая на тысячном?
Прислать комментарий     Решение


Задача 88304  (#5.8)

Темы:   [ Взвешивания ]
[ Перебор случаев ]
Сложность: 4-
Классы: 7,8

Бронзовые монеты в 1, 2, 3 и 5 коп. весят соответственно 1, 2, 3 и 5 г. Среди четырех бронзовых монет (по одной из каждого номинала) одна фальшивая — отличается от настоящих по весу. Как с помощью двух взвешиваний на чашечных весах без гирь определить фальшивую монету?
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .