ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Какое наименьшее количество точек на плоскости надо взять, чтобы среди попарных расстояний между ними встретились числа 1, 2, 4, 8, 16, 32, 64?

   Решение

Задачи

Страница: 1 [Всего задач: 4]      



Задача 79406  (#1)

Темы:   [ Теория алгоритмов (прочее) ]
[ Арифметические действия. Числовые тождества ]
[ Процессы и операции ]
Сложность: 3+
Классы: 7,8,9

Петя купил в магазине "Машины Тьюринга и другие вычислительные устройства" микрокалькулятор, который может выполнять следующие операции: по любым числам x и y он вычисляет x + y, xy и $ {\frac{1}{x}}$ (при x ≠ 0). Петя утверждает, что он может возвести любое положительное число в квадрат с помощью своего микрокалькулятора, сделав не более 6 операций. А вы можете это сделать? Если да, то попробуйте перемножить любые два положительных числа, сделав не более 20 операций (промежуточные результаты можно записывать, неоднократно используя их в вычислениях).
Прислать комментарий     Решение


Задача 79407  (#2)

Тема:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 3
Классы: 8

В квадрате ABCD находятся 5 точек. Доказать, что расстояние между какими-то двумя из них не превосходит $ {\frac{1}{2}}$AC.
Прислать комментарий     Решение


Задача 79408  (#3)

Темы:   [ Теория алгоритмов (прочее) ]
[ Обратный ход ]
Сложность: 3
Классы: 8

Петя приобрёл в магазине вычислительный автомат, который за 5 к. умножает любое введённое в него число на 3, а за 2 к. прибавляет к любому числу 4. Петя хочет, начиная с единицы, которую можно ввести бесплатно, набрать на автомате число 1981 и затратить наименьшую сумму денег. Во сколько обойдутся ему вычисления? А что будет, если он захочет набрать число 1982?
Прислать комментарий     Решение


Задача 79409  (#4)

Темы:   [ Системы точек ]
[ Неравенство треугольника (прочее) ]
Сложность: 4-
Классы: 8

Какое наименьшее количество точек на плоскости надо взять, чтобы среди попарных расстояний между ними встретились числа 1, 2, 4, 8, 16, 32, 64?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 4]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .