ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Докажите равенства:
  a)  cos π/5 – cos /5 = ½;
  б)  cosec π/7 = cosec /7 + cosec /7;
  в)  sin 9° + sin 49° + sin 89° + ... + sin 329° = 0.

Вниз   Решение


В угол вписана окружность с центром O. Через точку A, симметричную точке O относительно одной из сторон угла, провели к окружности касательные, точки пересечения которых с дальней от точки A стороной угла – B и C. Докажите, что центр описанной окружности треугольника ABC лежит на биссектрисе данного угла.

ВверхВниз   Решение


Бесконечная возрастающая арифметическая прогрессия такова, что произведение каждых двух различных её членов – также член этой прогрессии. Докажите, что все её члены – целые числа.

ВверхВниз   Решение


Станок выпускает детали двух типов. На ленте его конвейера выложены в одну линию 75 деталей. Пока конвейер движется, на станке готовится деталь того типа, которого на ленте меньше. Каждую минуту очередная деталь падает с ленты, а подготовленная кладётся в её конец. Через некоторое число минут после включения конвейера может случиться так, что расположение деталей на ленте впервые повторит начальное. Найдите  а) наименьшее такое число,  б) все такие числа.

ВверхВниз   Решение


Доказать, что существует бесконечно много натуральных чисел, не представимых в виде  p + n2k  ни при каких простых p и целых n и k.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 78213

Темы:   [ Простые числа и их свойства ]
[ Разложение на множители ]
[ Уравнения в целых числах ]
Сложность: 4
Классы: 8,9,10

Доказать, что существует бесконечно много натуральных чисел, не представимых в виде  p + n2k  ни при каких простых p и целых n и k.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .