|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В мешке лежат шарики двух разных цветов: черного и белого. Какое наименьшее число шариков нужно вынуть из мешка вслепую так, чтобы среди них заведомо оказались два шарика одного цвета? В однокруговом турнире участвуют 10 шахматистов. Через какое наименьшее количество туров может оказаться так, что единоличный победитель уже выявился досрочно? (В каждом туре участники разбиваются на пары. Выигрыш – 1 очко, ничья – 0,5 очка, поражение – 0). Окружность обладает тем свойством, что внутри неё можно двигать правильный треугольник так, чтобы каждая вершина треугольника описывала эту окружность. Найти замкнутую несамопересекающуюся кривую, отличную от окружности, внутри которой также можно двигать правильный треугольник так, чтобы каждая его вершина описывала эту кривую. |
Страница: 1 [Всего задач: 4]
Имеется несколько чисел, каждое из которых меньше чем 1951. Общее наименьшее
кратное любых двух из них больше чем 1951.
Автобусный маршрут содержит 14 остановок (считая две конечные). В автобусе
одновременно могут ехать не более 25 пассажиров. Доказать, что во время
поездки автобуса из одного конца в другой б) может оказаться, что пассажиры едут таким образом, что не существует десяти различных остановок A1, B1, A2, B2, A3, B3, A4, B4, A5, B5, которые обладали бы аналогичными свойствами.
Страница: 1 [Всего задач: 4] |
||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|