|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Пусть a = (a1, a2) и b = (b1, b2). Докажите, что a Перемножили несколько натуральных чисел и получили 224, причём самое маленькое число было ровно вдвое меньше самого большого. |
Страница: << 1 2 3 >> [Всего задач: 15]
Перемножили несколько натуральных чисел и получили 224, причём самое маленькое число было ровно вдвое меньше самого большого.
По круговой дорожке стадиона длиной 400 метров из одной точки в одном направлении выбегают три спортсмена с постоянными скоростями 12 км/ч,
В треугольнике АВС из вершин А и В проведены биссектрисы, а из вершины С – медиана. Оказалось, что точки их попарного пересечения образуют прямоугольный равнобедренный треугольник. Найдите углы треугольника АВС.
На острове 100 рыцарей и 100 лжецов. У каждого из них есть хотя бы один друг. Однажды ровно 100 человек сказали: "Все мои друзья – рыцари", и ровно 100 человек сказали: "Все мои друзья – лжецы". Каково наименьшее возможное количество пар друзей, один из которых рыцарь, а другой лжец?
Числа x, y и z таковы, что
Страница: << 1 2 3 >> [Всего задач: 15] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|