|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи a, b и c - длины сторон произвольного треугольника. Докажите, что a = y + z, b = x + z и c = x + y, где x, y и z — положительные числа.
В окружность вписан равнобедренный треугольник с основанием
a и углом при основании
а) Олег перемножил какие-то семь подряд идущих чисел. Верно ли, что у него получилось число, оканчивающееся на ровно один ноль? Выведите из неравенства задачи 61401 а) неравенство Коши-Буняковского: б) неравенство между средним арифметическим и средним
квадратичным: в) неравенство между средним арифметическим и средним
гармоническим: |
Страница: 1 2 >> [Всего задач: 6]
Предположим, что имеется набор функций f1(x), ..., fn(x), определённых на отрезке [a, b]. Докажите неравенство:
Докажите неравенство:
Выведите из неравенства задачи 61401 а) неравенство Коши-Буняковского: б) неравенство между средним арифметическим и средним
квадратичным: в) неравенство между средним арифметическим и средним
гармоническим:
Докажите неравенство:
Используя результат задачи 61403, докажите неравенства:
в)
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|