ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Докажите, что сумма расстояний от любой точки, расположенной внутри правильного n-угольника, до его сторон не зависит от выбора точки.

Вниз   Решение


На каждой стороне прямоугольного треугольника построено по квадрату (пифагоровы штаны), и вся фигура вписана в круг. Для каких прямоугольных треугольников это можно сделать?

ВверхВниз   Решение


Какое наименьшее количество точек на плоскости надо взять, чтобы среди попарных расстояний между ними встретились числа 1, 2, 4, 8, 16, 32, 64?

ВверхВниз   Решение


Докажите неравенство   3(a1b1 + a2b2 + a3b3) ≥ (a1 + a2 + a3)(b1 + b2 + b3)  при  a1a2a3b1b2b3.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



Задача 61382  (#10.031)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 9,10,11

Докажите неравенство для положительных значений переменных:  

Прислать комментарий     Решение

Задача 61383  (#10.032)

Тема:   [ Классические неравенства (прочее) ]
Сложность: 3
Классы: 9,10,11

Докажите для положительных значений переменных неравенство  

Прислать комментарий     Решение

Задача 61384  (#10.033)

Темы:   [ Алгебраические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10,11

Докажите неравенство   3(a1b1 + a2b2 + a3b3) ≥ (a1 + a2 + a3)(b1 + b2 + b3)  при  a1a2a3b1b2b3.

Прислать комментарий     Решение

Задача 61385  (#10.034)

Темы:   [ Классические неравенства (прочее) ]
[ Перестановки и подстановки (прочее) ]
[ Инварианты и полуинварианты ]
Сложность: 3
Классы: 8,9,10,11

Докажите, что если   a1a2 ≥ ... ≥ an,   b1b2 ≥ ... ≥ bn,   то наибольшая из сумм вида   a1bk1 + a2bk2 + ... + anbkn     (k1, k2, ..., kn – перестановка чисел
1, 2, ..., n),  это сумма   a1b1 + a2b2 + ... + anbn,   а наименьшая – сумма   a1bn + a2bn–1 + ... + anb1.

Прислать комментарий     Решение

Задача 61386  (#10.035)

 [Неравенство Чебышёва]
Темы:   [ Классические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10,11

Докажите неравенство Чебышёва     при условии, что   a1a2 ≥ ... ≥ an   и
b1b2 ≥ ... ≥ bn.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .