ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Дидин М.

Есть 100 кучек по 400 камней в каждой. За ход Петя выбирает две кучки, удаляет из них по одному камню и получает за это столько очков, каков теперь модуль разности числа камней в этих двух кучках. Петя должен удалить все камни. Какое наибольшее суммарное количество очков он может при этом получить?

Вниз   Решение


Сколько существует различных возможностей рассадить 5 юношей и 5 девушек за круглый стол с 10 креслами так, чтобы они чередовались?

ВверхВниз   Решение


Точки P , Q , R и S расположены в пространстве так, что середины отрезков SQ и PR лежат на сфере радиуса a , а отрезки PS , PQ , QR и SR делятся сферой на три части в отношении 1:2:1 каждый. Найдите расстояние от точки P до прямой QR .

ВверхВниз   Решение


Докажите неравенство для положительных значений переменных:  

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 76]      



Задача 61357  (#10.006)

Тема:   [ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

Докажите неравенство     для положительных значений переменных.

Прислать комментарий     Решение

Задача 30865  (#10.007)

Темы:   [ Неравенство Коши ]
[ Квадратичные неравенства (несколько переменных) ]
Сложность: 2+
Классы: 8,9,10

Докажите, что  x² + y² + z² ≥ xy + yz + zx  при любых x, y, z.

Прислать комментарий     Решение

Задача 61359  (#10.008)

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Неравенство Коши ]
Сложность: 2
Классы: 8,9,10

Докажите неравенство для положительных значений переменных:   x² + y² + 1 ≥ xy + x + y.

Прислать комментарий     Решение

Задача 61360  (#10.009)

Темы:   [ Квадратичные неравенства (несколько переменных) ]
[ Неравенство Коши ]
Сложность: 2+
Классы: 8,9,10

Докажите неравенство для положительных значений переменных:  

Прислать комментарий     Решение

Задача 30870  (#10.010)

Тема:   [ Неравенство Коши ]
Сложность: 3+
Классы: 9,10

Докажите, что  x4 + y4 + 8 ≥ 8xy  при любых x и y.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 76]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .