|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи За круглым столом сидят мальчики и девочки. Докажите, что количество пар соседей разного пола чётно. К каждому члену некоторой конечной последовательности подряд идущих натуральных чисел приписали справа по две цифры и получили последовательность квадратов подряд идущих натуральных чисел. Какое наибольшее число членов могла иметь эта последовательность? Найти все равнобочные трапеции, которые разбиваются диагональю на два равнобедренных треугольника. В треугольнике $ABC$ вневписанная окружность, лежащая напротив угла $C$, касается стороны $AB$ в точке $T$. Пусть $J$ – центр вневписанной окружности, лежащей напротив угла $A$, a $M$ – середина $AJ$. Докажите, что $MT=MC$. Докажите неравенство для положительных значений переменных: |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 76]
Докажите, что x + 1/x ≥ 2 при x > 0.
Докажите, что
Докажите неравенство для положительных значений переменных: (a + b + c + d)² ≤ 4(a² + b² + c² + d²).
Докажите неравенство для положительных значений переменных:
Докажите неравенство
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 76] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|