ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Пусть E, F, G и H — середины сторон AB, BC, CD и DA четырехугольника ABCD. Докажите, что SABCD $ \leq$ EG . HF$ \le$(AB + CD)(AD + BC)/4.

Вниз   Решение


На предприятии трудятся 50000 человек. Для каждого из них сумма количества его непосредственных начальников и его непосредственных подчинённых равна 7. В понедельник каждый работник предприятия издаёт приказ и выдаёт копию этого приказа каждому своему непосредственному подчинённому (если такие есть). Далее, каждый день работник берёт все полученные им в предыдущий день приказы и либо раздаёт их копии всем своим непосредственным подчинённым, либо, если таковых у него нет, выполняет приказы сам. Оказалось, что в пятницу никакие бумаги по учреждению не передаются. Докажите, что на предприятии не менее 97 начальников, над которыми нет начальников.

ВверхВниз   Решение


На бесконечной шахматной доске на двух соседних по диагонали чёрных полях стоят две чёрные шашки. Можно ли дополнительно поставить на эту доску некоторое число чёрных шашек и одну белую таким образом, чтобы белая одним ходом взяла все чёрные шашки, включая две первоначально стоявшие?

ВверхВниз   Решение


Докажите равенства:
  а)  z + = 2Re z;   б)  z = 2i Im z;   в)  z = |z|2.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 83]      



Задача 61065  (#07.001)

Тема:   [ Алгебраическая форма, сопряжение, модуль и т.п. ]
Сложность: 2
Классы: 9,10,11

Пусть  z = x + iy,  w = u + iv.  Найдите
  а)  z + w;   б)  zw;   в)  z/w.

Прислать комментарий     Решение

Задача 61066  (#07.002)

Тема:   [ Алгебраическая форма, сопряжение, модуль и т.п. ]
Сложность: 2
Классы: 9,10,11

Докажите равенства:
  а)     б)     в)     г)     д)  

Прислать комментарий     Решение

Задача 61067  (#07.003)

Тема:   [ Алгебраическая форма, сопряжение, модуль и т.п. ]
Сложность: 2
Классы: 9,10,11

Докажите равенства:
  а)  z + = 2Re z;   б)  z = 2i Im z;   в)  z = |z|2.

Прислать комментарий     Решение

Задача 61068  (#07.004)

Тема:   [ Геометрия комплексной плоскости ]
Сложность: 2+
Классы: 9,10,11

Дайте геометрическую интерпретацию следующих неравенств:
  а)  |z + w| ≤ |z| + |w|;   б)  |z – w| ≥ ||z| – |w||;   в)  |z – 1| ≤ |arg z|,  если  |z| = 1.

Прислать комментарий     Решение

Задача 61069  (#07.005)

Тема:   [ Алгебраическая форма, сопряжение, модуль и т.п. ]
Сложность: 2+
Классы: 9,10,11

Представьте в тригонометрической форме числа:
  а)  1 + i;   б)  2 + + i;   в)  1 + cos φ + isin φ;   г)  sin π/6 + isin π/6;   д)  .

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .