|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Даны натуральные числа n и k, n > 1. Напечатать k десятичных знаков числа 1/n. (При наличии двух десятичных разложений выбирается то из них, которое не содержит девятки в периоде.) Программа должна использовать только целые переменные. Выполните построения с помощью линейки с двумя параллельными краями (двусторонней линейки) без циркуля. а) Постройте биссектрису данного угла AOB. б) Дан острый угол AOB. Постройте угол BOC, биссектрисой которого является луч OA. Доказать: если стороны треугольника образуют арифметическую прогрессию, то радиус вписанного круга равен Доказать, что если целое n > 1, то 11·2²·3³·...·nn < nn(n+1)/2. На катетах прямоугольного треугольника ABC с прямым углом C вовне построили квадраты ACKL и BCMN; CE – высота треугольника. Докажите, что угол LEM прямой. Разделите многочлены с остатком: |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 141]
Пусть x1, x2,..., xn – корни уравнения anxn + ... + a1x + a0 = 0. Какие корни будут у уравнений
Пусть многочлен P(x) = xn + an–1xn–1 + ... + a1x + a0  имеет корни  x1, x2, ..., xn,  то есть  P(x) = (x – x1)(x – x2)...(x – xn).  Рассмотрим многочлен
Разделите многочлены с остатком:
Найдите остаток от деления многочлена P(x) = x5 – 17x + 1 на x + 2.
При каком значении a многочлен P(x) = x1000 + ax² + 9 делится на x + 1?
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 141] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|