|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Потроить треугольник по высоте к стороне а ha, медиане к стороне a ma и Докажите, что многочлен степени n имеет не более чем n корней. |
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 141]
Найдите все значения x, удовлетворяющие неравенству (2 – a)x³ + (1 – 2a)x² – 6x + 5 + 4a – a² < 0 хотя бы при одном значении a из отрезка [–1, 2].
Пусть P(x) и Q(x) – многочлены,
причём Q(x) не равен нулю тождественно. Докажите, что существуют
такие многочлены T(x) и R(x), что
Докажите, что остаток от деления многочлена P(x) на x – c равен P(c).
Докажите, что многочлен степени n имеет не более чем n корней.
Можно ли из какой-то точки плоскости провести к графику многочлена n-й степени больше чем n касательных?
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 141] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|