ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Замостите обычную шахматную доску плитками, изображенными на рис.


Вниз   Решение


В круге проведены два перпендикулярных диаметра. Рассмотрим четыре круга, диаметрами которых служат четыре получившихся радиуса исходной окружности (рис.1). Докажите, что суммарная площадь попарно общих частей этих кругов равна площади части исходного круга, лежащей вне рассматриваемых четырёх кругов.

ВверхВниз   Решение


Какая из дробей больше: 29/73 или 291/731?

ВверхВниз   Решение


Доказать, что любая правильная дробь может быть представлена в виде (конечной) суммы обратных величин попарно различных целых чисел.

ВверхВниз   Решение


Рациональные числа x, y и z таковы, что все числа  x + y² + z²,  x² + y + z²  и  x² + y² + z  целые. Докажите, что число 2x целое.

ВверхВниз   Решение


Докажите, что если  n > 6  – чётное совершенное число, то его цифровой корень (см. задачу 60794) равен 1.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 60800  (#04.174)

Темы:   [ Признаки делимости на 3 и 9 ]
[ Арифметика остатков (прочее) ]
Сложность: 3
Классы: 8,9,10

Какие цифровые корни (см. задачу 60794) бывают у полных квадратов и полных кубов?

Прислать комментарий     Решение

Задача 60801  (#04.175)

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 7,8

Два числа a и b получаются друг из друга перестановкой цифр. Чему равен цифровой корень (см. задачу 60794) числа  a – b?

Прислать комментарий     Решение

Задача 60802  (#04.176)

Темы:   [ Арифметика остатков (прочее) ]
[ Количество и сумма делителей числа ]
Сложность: 4-
Классы: 9,10,11

Докажите, что если  n > 6  – чётное совершенное число, то его цифровой корень (см. задачу 60794) равен 1.

Прислать комментарий     Решение

Задача 60803  (#04.177)

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 7,8,9

На доске написано число 8n. У него вычисляется сумма цифр, у полученного числа вновь вычисляется сумма цифр, и так далее, до тех пор, пока не получится однозначное число. Что это за число, если  n = 2001?

Прислать комментарий     Решение

Задача 60804  (#04.178)

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 3
Классы: 7,8,9

Докажите ошибочность следующих записей:
  а)  4237·27925 = 118275855;
  б)  42971064 : 8264 = 5201;
  в)  1965² = 3761225;
  г)   = 23.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .