|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что для любого натурального n выполнено неравенство (n – 1)n+1(n + 1)n–1 < n2n. Двое играют в такую игру. Из кучки, где имеется 25 спичек, каждый берёт себе по очереди одну, две или три спички. Выигрывает тот, у кого в конце На боковых сторонах AB и CD трапеции ABCD взяты точки M и N так, что отрезок MN параллелен основаниям и делит площадь трапеции пополам. Найдите длину MN, если BC = a и AD = b. Окружности S1 и S2 пересекаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке B, S2 в точке C. В точках C и B проведены касательные к окружностям, пересекающиеся в точке D. Докажите, что угол BDC не зависит от выбора прямой, проходящей через A. Сколько последовательностей {a1, a2, ..., a2n}, состоящих из единиц и минус единиц, обладают тем свойством, что a1 + a2 + ... + a2n = 0, а все частичные суммы a1, a1 + a2, ..., a1 + a2 + ... + a2n неотрицательны? |
Страница: 1 2 >> [Всего задач: 6]
Сколько последовательностей {a1, a2, ..., a2n}, состоящих из единиц и минус единиц, обладают тем свойством, что a1 + a2 + ... + a2n = 0, а все частичные суммы a1, a1 + a2, ..., a1 + a2 + ... + a2n неотрицательны?
Сколько существует способов разрезать выпуклый (n+2)-угольник диагоналями на треугольники?
Рассмотрим шахматную доску n×n. Требуется провести ладью из левого нижнего угла в правый верхний. Двигаться можно только вверх и вправо, не заходя при этом на клетки главной диагонали и ниже нее. (Ладья оказывается на главной диагонали только в начальный и в конечный моменты времени.) Сколько у ладьи существует таких маршрутов?
Билеты стоят 50 центов, и 2n покупателей стоят в очереди в кассу. Половина из них имеет по одному доллару, остальные – по 50 центов. Кассир начинает продажу билетов, не имея денег. Сколько существует различных порядков в очереди, таких, что кассир всегда может дать сдачу?
а) Пусть {a1, a2,..., an} – последовательность целых чисел, сумма которых равна 1. Докажите, что ровно у одного из ее циклических сдвигов б) Выведите отсюда равенства:
Страница: 1 2 >> [Всего задач: 6] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|