|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В парке росли липы и клены. Кленов среди них было 60%. Весной в парке посадили липы, после чего кленов стало 20%. А осенью посадили клены, и кленов стало снова 60%. Во сколько раз увеличилось количество деревьев в парке за год? У Насти есть пять одинаковых с виду монет, среди которых три настоящие – весят одинаково – и две фальшивые: одна тяжелее настоящей, а вторая на столько же легче настоящей. Эксперт по просьбе Насти сделает на двухчашечных весах без гирь три взвешивания, которые она укажет, после чего сообщит Насте результаты. Может ли Настя выбрать взвешивания так, чтобы по их результатам гарантированно определить обе фальшивые монеты и указать, какая из них более тяжёлая, а какая более лёгкая? Дана окружность с диаметром AB. Другая окружность с центром в точке A пересекает отрезок AB в точке C, причём AC < ½ AB. Общая касательная двух окружностей касается первой окружности в точке D. Докажите, что прямая CD перпендикулярна AB. a, b и c - длины сторон произвольного треугольника. Докажите, что a2 + b2 + c2 < 2(ab + bc + ca). Число x таково, что число x + |
Страница: 1 2 >> [Всего задач: 7]
Докажите, что если a и b – целые числа и b ≠ 0, то существует единственная пара чисел q и r, для которой a = bq + r, 0 ≤ r < |b|.
n = akqk + ak - 1qk - 1 +...+ a1q + a0,
где
0
Пусть a0, a1, ..., an, ... – периодическая последовательность, то есть для некоторого натурального T an+T = an (n ≥ 0). Докажите, что
Докажите, что аксиома индукции равносильна любому из следующих утверждений: 1) всякое непустое подмножество натуральных чисел содержит наименьшее число; 2) всякое конечное непустое подмножество натуральных чисел содержит наибольшее число; 3) если некоторое множество натуральных чисел содержит 1 и вместе с каждым натуральным числом содержит следующее за ним, то оно содержит все натуральные числа; 4) если известно, что некоторое утверждение верно для некоторого a, и из предположения, что утверждение верно для всех натуральных чисел k, таких, что a 5) (Обратная индукция.) Если известно, что некоторое утверждение верно для 1 и 2, и из предположения, что утверждение верно для некоторого n > 1, вытекает его справедливость для 2n и n - 1, то это утверждение верно для всех натуральных чисел.
Страница: 1 2 >> [Всего задач: 7] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|