Версия для печати
Убрать все задачи
Для каждого натурального n обозначим через P(n) число разбиений n в сумму натуральных слагаемых (разбиения, отличающиеся лишь порядком слагаемых, считаются одинаковыми; например, P(4) = 5, потому что 4 = 4 = 1 + 3 = 2 + 2 = 1 + 1 + 2 = 1 + 1 + 1 + 1 – пять способов).
а) Количество различных чисел в данном разбиении назовем его разбросом (например, разбиение 4 = 1 + 1 + 2 имеет разброс 2, потому что в этом разбиении два различных числа). Докажите, что сумма Q(n) разбросов всех разбиений числа n равна 1 + P(1) + P(2) + ... + P(n–1).
б) Докажите, что

Решение
a,
b и
c - длины сторон произвольного треугольника. Докажите, что
a(b - c)2 + b(c - a)2 + c(a - b)2 + 4abc > a3 + b3 + c3.


Решение
Игра с 25-ю монетами. В ряд лежат 25 монет. За ход разрешается брать одну или две рядом лежащие монеты. Проигрывает тот, кому нечего брать.


Решение
Из каждой вершины многоугольника опущены перпендикуляры на стороны, её не
содержащие. Докажите, что хотя бы для одной вершины одно из оснований
перпендикуляров лежит на самой стороне, а не на её продолжении.

Решение