ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

а) Даны прямые a, b, c, d, проходящие через одну точку, и прямая l, через эту точку не проходящая. Пусть A, B, C, D — точки пересечения прямой l с прямыми a, b, c, d соответственно. Докажите, что (abcd )= (ABCD).
б) Докажите, что двойное отношение четверки точек сохраняется при проективных преобразованиях.

Вниз   Решение


Сколько существует способов разрезать выпуклый (n+2)-угольник диагоналями на треугольники?

ВверхВниз   Решение


На шахматной доске N×N стоят N² шашек. Можно ли их переставить так, чтобы любые две шашки, отстоявшие на ход коня, после перестановки отстояли друг от друга лишь на ход короля (то есть стояли рядом)? Рассмотрите два случая:
  а)  N = 3;
  б)  N = 8.

ВверхВниз   Решение


Пусть a^b обозначает число ab. В выражении  7^7^7^7^7^7^7  надо расставить скобки, чтобы определить порядок действий (всего будет 5 пар скобок).
Можно ли расставить эти скобки двумя разными способами так, чтобы получилось одно и то же число?

ВверхВниз   Решение


Разрежьте фигуру, показанную на рисунке, на четыре одинаковые части.

ВверхВниз   Решение


На плоскости дано n$ \ge$3 точек, причем не все они лежат на одной прямой. Докажите, что существует окружность, проходящая через три из данных точек и не содержащая внутри ни одной из оставшихся точек.

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 9]      



Задача 58053  (#20.008)

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3
Классы: 8,9

На плоскости дано n$ \ge$3 точек, причем не все они лежат на одной прямой. Докажите, что существует окружность, проходящая через три из данных точек и не содержащая внутри ни одной из оставшихся точек.
Прислать комментарий     Решение


Задача 58054  (#20.009)

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 3
Классы: 8,9

На плоскости расположено несколько точек, все попарные расстояния между которыми различны. Каждую из этих точек соединяют с ближайшей. Может ли при этом получиться замкнутая ломаная?
Прислать комментарий     Решение


Задача 58055  (#20.010)

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4
Классы: 8,9

Докажите, что по крайней мере одно из оснований перпендикуляров, опущенных из внутренней точки выпуклого многоугольника на его стороны, лежит на самой стороне, а не на ее продолжении.
Прислать комментарий     Решение


Задача 58056  (#20.010B)

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4
Классы: 8,9

Из каждой вершины многоугольника опущены перпендикуляры на стороны, её не содержащие. Докажите, что хотя бы для одной вершины одно из оснований перпендикуляров лежит на самой стороне, а не на её продолжении.
Прислать комментарий     Решение


Задача 58057  (#20.011)

Тема:   [ Наименьшее или наибольшее расстояние (длина) ]
Сложность: 4+
Классы: 8,9

Докажите, что в любом выпуклом пятиугольнике найдутся три диагонали, из которых можно составить треугольник.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .